
EXERCISES 7.2: SOLUTIONS

Disclaimer: These are my own solutions. It is possible that it contains some fatal errors. I
appreciate it if you let me know any errors you find.

General notations: For a linear operator T ∈ End(V ), µT denotes its minimal polynomial
and χT denotes its characteristic polynomial. For a T -invariant subspace W ⊂ V , the notation
ST (α;W ) denotes the ideal {f ∈ F [x] : f(T )α ∈W}, which is called the conductor of α into W . In
particular, if W = 0, ST (α; 0) = {f : f(T )α = 0}. This the T -annihilator of α, and it is also denoted
by M(α;T ) in §7.1. Let I(T ) = ∩α∈V ST (α; 0) = {f ∈ F [x] : f(T )α = 0,∀α ∈ V }. Note that µT is
the monic generator of I(T ).

Exercise 2: Let T : V → V be a linear operator on a finite dimensional vector space V . Let R be
the range of T and N be the null space of T . (a) Prove that R has a complementary T -invariant
subspace if and only if R is independent of N . (b) If R and N are independent, prove that N is the
unique T -invariant subspace complementary to R.

Proof. (a) The dimension theorem says that dimR+dimN = dimV. If R and N are independent, we
have R∩N = {0} and thus dim(R+N) = dimR+ dim(N) = dim(V ), by dimension theorem. Thus
V = R+N . Since N ∩R = 0, we get V = R⊕N . Note that N is clearly T -invariant. Thus R has a
T -invariant complementary subspace. Conversely, suppose that R has a T -invariant complementary
subspace, and thus R is admissible. For any α ∈ V , we have Tα ∈ R. The admissibility shows that
there exists a β ∈ R such that Tα = Tβ. Thus α−β ∈ N . The equation α = β+α−β implies that
V = R+N . This means that dim(R∩N) = dimR+ dimN − dim(R+N) = 0. Thus R∩N = {0}.

(b) Suppose that V = R ⊕W for a T -invariant subspace W ⊂ V . We will show that W = N .
Take α ∈ W , we have Tα ∈ W since W is T -invariant. On the other hand, Tα ∈ R by definition.
Thus Tα ∈ R∩W = {0}, which implies that Tα = 0 and α ∈ N . Thus W ⊂ N . On the other hand,
we know that dimW = dimV − dimR = dimN . We must have W = N . �

Exercise 8: Let T : R3 → R3 be the linear operator given by the matrix 3 −4 −4
−1 3 2
2 −4 −3

 .
Find nonzero vectors α1, . . . , αr satisfying the conditions of Theorem 3.

Proof. We can compute that χT = (x−1)3 and µT = (x−1)2. Thus we have V = Z(α1;T )⊕Z(α2;T )
and p1 = (x − 1)2, p2 = (x − 1). Note that α2 is an eigenvector of 1, α1 is in ker(p1(T )) but not
an eigenvector of 1, but Z(α1;T ) contains an eigenvector of 1. Since dimZ(α1;T ) = 2, we have
Tα1 6= α1, but (T − I)2α1 = 0. We first compute the eigenspace of 1, namely, ET (1) = ker(T − I).
A simple calculation shows that

ET (1) =


2y + 2z

y
z

 : y, z ∈ R

 .

Since (T − I)2 = 0, α1 can be taken as any vector with α1 /∈ ET (1). For example, we can take

α1 =

1
0
0

. In this case (T − I)α1 =

 2
−1
2

. The vector α2 can be taken as any vector in ET (1)
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which is not proportional to (T − I)α1. For example, we can take α2 =

2
1
0

. The choices of α1, α2

are not unique. �

Exercise 9: Let A be the real matrix

A =

 1 3 3
3 1 3
−3 −3 −5

 .
Find an invertible real matrix P ∈ GL3(R) such that P−1AP is in rational form.

Proof. Let T : R3 → R3 be the linear operator defined by A. We can compute the characteristic
polynomial of T is χT = (x+ 2)2(x−1) and its minimal polynomial is µT = (x+ 2)(x−1). We have
V = Z(α1;T )⊕ Z(α2;T ), with p1 = (x+ 2)(x− 1) and p2 = x+ 2. Similar as the last problem, we
can take α1 arbitrary other than eigenvectors of 1 or −2, and α2 an eigenvector of −2. Take

α1 = [1, 0, 0]T , Tα1 = [1, 3,−3]T ;α2 = [1,−1, 0]T ,

and

P = [α1, Tα1, α2] =

1 1 1
0 3 −1
0 −3 0

 .
Then we have

AP = P

0 2 0
1 −1 0
0 0 −2

 .
Again, the choice of P is not unique. �

Exercise 11: Prove that if A and B are 3 × 3 matrices over the field F , A is similar to B if and
only if they have the same characteristic polynomial and the same minimal polynomial. Give an
example which shows that this is false for 4× 4 matrices.

Proof. If A and B are similar, then clearly they have the same characteristic and minimal polynomial
(for the minimal polynomial part, it is easy to check I(TA) = I(TB). A different argument is:
A,B represent the same linear operators with different choice of basis). Now suppose that A,B ∈
Mat3×3(F ) such that χA = χB and µA = µB . To show that A and B are similar, it suffices to show
that A and B have the same invariant factors. We know that degχA = 3 and we discuss degree
of µA. If deg(µA) = 3, then µA = χA, and thus A has only a single invariant factor, which is µA.
The same is true for B. The assumption shows that A,B have the same invariant factors. Next,
we assume that deg(µA) = 2. In this case, χA = µAqA for a degree one factor qA and the invariant
factors of A are {µA, qA = χA/µA}. Again, the assumption shows that A and B have the same
invariant factors. Finally, assume that deg(µA) = 1. Assume that µA = (x − a) for some a ∈ F .
This implies that A − aI3 = 0 and thus A = aI3. Since µB = µA, we also have B = aI3. Thus
A = B in this case.

In the 4× 4 case, we can take A such that its invariant factors are x2, x, x and take B such that
its invariant factors are x2, x2. Note that µA = µB = x2, χA = χB = x4. But A and B are not
similar, because they have different invariant factors. Such matrices can be realized by

A =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , B =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


�

Exercise 12: Let F be a subfield of the field of complex numbers, and let A,B ∈ Matn×n(F ).
Prove that A and B are similar over the field of complex numbers, then they are similar over F .

We did not talk about how linear algebra behaves under field extension. Here we prove some simple
useful facts regarding this problem. In the following, K is a field and F is a subfield of K, which
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means F is a subset of K and together with the addition and multiplication defined on K, F is also a
field. You can think K = C, F is either Q or R; or K =

{
a+ bα+ cα2 : α = 3

√
2, a, b, c ∈ Q

}
, F = Q.

Lemma 1. Let A ∈ Matm×n(F ). If Ax = 0 has a nonzero solution x ∈ Kn, then Ax = 0 has a
nonzero solution in Fn. Moreover, we have dimK {x ∈ Kn : Ax = 0} = dimF {x ∈ Fn : Ax = 0} .

Note that F ⊂ K, it is natural to view A as an element in Matm×n(K) and thus we can talk
about solutions of Ax = 0 in Kn.

Proof. Let R ∈ Matm×n(F ) be the row reduced echelon form of A. The key observation is when R
is viewed as an element in Matm×n(K), it is still in row reduced echelon form. Since row reduced
echelon form is unique (see Corollary of page 58 of the textbook), R is also the row echelon form
of A when A is viewed as matrix in Matm×n(K). Note that Ax = 0 has a nonzero solution in
Kn iff Rx = 0 has a nonzero solution in Kn iff the number of leading ones in R is less than n, or
rank(R) < n. Thus Ax = 0 has a nonzero solution in Fn. Actually, the key observation shows that
rankF (A) = rankK(A), where rankK(A) denotes the rank of A when it is viewed as a matrix over
K. The “moreover” part follows from

dimK {x ∈ Kn : Ax = 0} = n− rank(R) = dimF {x ∈ Fn : Ax = 0} .
�

Remark 2. The above proof used the fact that: after elementary row operations, every matrix A
can be reduced to an elementary row echelon form R, and the linear system Ax = 0 is equivalent to
Rx = 0. In particular, the elementary operation Ri → cRi (replacing a row by c times this row) for
c 6= 0 is invertible. This is a property of field. Think about the following example. Let K = Z/6Z,
which consists of elements k for 0 ≤ k ≤ 5 and k ∈ Z. Here k = k + 6Z denotes the equivalence
class. Consider its subset F =

{
0, 3
}
⊂ K. It should be easy to see that F is a field with the usual

operations. In fact, F = F2, which is field consisting 2 elements. Note that K is not a field because
3, 2 ∈ K are nonzero, but 3 · 2 = 0. Now consider the linear equation

x+ x+ x = 0.

Note that the above equation has a nontrivial solution x = 2 over K, but it does not have nontrivial
solution over F . If you tried to go through the above proof, you will find that the main issue here
is: while 3 is nonzero in K, it is not invertible in K.

Remark 3. In the terminology you will learn later, Lemma 1 can be restated as follows:

ker(TA)⊗F K = ker(TA ⊗F K),

where TA : Fn → Fm is the usual linear map defined by A and TA ⊗F K is the linear map
Fn ⊗F K = Kn → Km = Fn ⊗F K. In other words, the short sequence

0→ ker(TA)⊗F K → Kn → Km

is still exact. This reflects the fact that K is a flat F -module.

Lemma 4. Let S = {α1, . . . , αr} ∈ Fn. If S is linearly dependent over K, then it is also linearly
dependent over F .

Since Fn ⊂ Kn, S can be viewed as a subset of Kn and thus we can consider linearly dependence
of S over K.

Proof. Let A be the matrix A = [α1, . . . , αr] ∈ Matn×r(F ) ⊂ Matn×r(K). The assumption says
that Ax = 0 has a nonzero solution in Kr. By Lemma 1, Ax = 0 has a nontrivial solution in F r,
which is equivalent to say that S is linearly dependent over F . �

First proof of Exercise 12. In this proof, we assume that the characteristic of K is zero, which is
true if K = C as in the assumption of Ex 12. Later, we will see that this assumption is unnecessary.
Let VK = {X ∈Mn×n(K) : AX = XB} and VF = {X ∈Mn×n(F ) : AX = XB}. The assumption
says that VK is not the zero space. Thus by Lemma 1, dimF VF = dimK VK ≥ 1. Let B =
{α1, . . . , αk ∈ VF } be an F -basis of VF . By Lemma 4, α1, . . . , αk are also linearly independent over
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K. Let W =
{∑k

i=1 ciαi : ci ∈ K
}

be the K-span of B. Then W ⊂ VK and dimKW = k ≥ 1.

Lemma 1 says that dimF VF = dimK VK , and thus we have W = VK by counting dimension. We
need to show there exists a matrix Q ∈ VF such that det(Q) 6= 0.

Consider the determinant function det : Mn×n(K) → K and restrict it to VK . The assumption

says that there exists a matrix P ∈ VK such that det(P ) 6= 0. For a general element X =
∑k
i=1 xiαi

with xi ∈ F, αi ∈ B, a general fact says that det(X) = det(
∑k
i=1 xiαi) is a polynomial f on the

variables x1, . . . , xk, whose coefficients are in F . In other words, f ∈ F [x1, . . . , xk]. A very special
case is when k = 1 and in this case, det(x1α1) = det(α1)xn1 . The assumption says that there exists
x1, . . . , xk ∈ K such that f(x1, . . . , xk) 6= 0, and thus this polynomial f is nonzero. Since F has
characteristic zero, there must be y1, . . . , yk ∈ F such that f(y1, . . . , yk) 6= 0 (see Theorem 3, page

126 for this fact when there is only one variable). Note that Q =
∑k
i=1 yiαi ∈ VF and det(Q) 6= 0.

We are done. �

Remark 5. The above proof used some facts on determinant and polynomials of several variables.
Moreover, it only works when characteristic of F is zero. See the following for a proof which works
for more general situations.

Lemma 6. Let A ∈ Matn×n(F ), and let µA,F (resp. µA,K) denote the minimal polynomial of A
when viewed as a matrix over F (resp. over K). Then µA,F = µA,K .

This fact is proved in page 192, but we did not cover the proof in class.

Proof. Denote I(A,F ) = {f ∈ F [x] : f(A) = 0} and I(A,K) = {f ∈ K[x] : f(A) = 0}. Then by
definition I(A,F ) = µA,FF [x], I(A,K) = µA,KK[x]. Note that µA,F ∈ I(A,K) since µA,F (A) = 0
and µA,F ∈ F [x] ⊂ K[x]. This shows that µA,K |µA,F . Suppose that deg(µA,K) = r, then

S = {I, A, . . . , Ar}

is linearly dependent over K. Thus Lemma 4 shows that S is also linearly dependent over F . This
shows that A satisfies a polynomial f ∈ F [x] with deg(f) = r. This shows deg(µA,F ) ≤ r =
deg(µA,K). This condition plus µA,K |µA,F imply that µA,K = µA,F . �

Second proof of Exercise 12. Actually, the complex field C can be replaced by any field K such that
F ⊂ K. In the following argument, we just replace C by K. We first show that the rational
form for A is the same whether A is viewed as a matrix over F or over K. We consider the cyclic
decomposition of T : Fn → Fn, where Tx = Ax. We have

Fn = Z(α1;T ;F )⊕ · · · ⊕ Z(αr;T ;F ),

with invariant factors p1, p2, . . . , pr ∈ F [x], pi|pi−1, where Z(αi;T ;F ) = {f(T )αi : f ∈ F [x]}. Thus
the canonical rational form of A (as a matrix in Mn×n(F )) is

R =

A1

. . .

Ar

 ,
where Ai is the companion matrix of pi.

Let Ti : Z(αi;T ;F )→ Z(αi;T ;F ) be the restriction of T to Z(αi;A;F ). By Theorem 1 of page
228, pi is the minimal polynomial of Ti, namely, pi = µTi,F . Here we add an F in the subscript to
emphasize that everything is viewed as an F -vector space. By Lemma 6, we also have pi = µTi,K ,
namely pi is the minimal polynomial of Ti : Z(αi;T ;K)→ Z(αi;T ;K), when Ti is viewed as a linear
operators of K-vector space. In particular, this shows that

dimK Z(αi;T ;K) = deg pi = dimF Z(αi;T ;F ).

Assume that deg(pi) = di. Consider the basis Bi =
{
αi, Tαi, . . . , T

di−1αi
}

of Z(αi;T ;F ). Note that
Bi ⊂ Z(αi;T ;K), and by Lemma 4, Bi is linearly independent over K. Since dimK Z(αi;T ;K) = di,
Bi is also a K-basis of Z(αi;T ;K). Now consider B = {B1, . . . ,Br}, which is an F -basis of Fn by
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Lemma page 209. Since the set B is linearly independent over F , it’s linearly independent over K
by Lemma 4 again. Since |B| = n,B ⊂ Fn ⊂ Kn and B is K-linearly independent, we get that

Kn = Z(α1;T ;K)⊕ · · · ⊕ Z(αr;T ;K)

by Lemma page 209. Thus the above is indeed the cyclic decomposition of Kn by the uniqueness
part of Theorem 3, page 233, and the invariant factors are still p1, . . . , pr. Thus the rational form
of A (when viewed as a matrix in Matn×n(K)) is still R.

Now suppose that A,B ∈ Matn×n(F ) such that A and B are similar over K. This means that the
rational form of A over K is the same as the rational form of B over K. By the above discussion,
the rational forms of A,B over F are also the same. Thus A and B are similar over F . �

The above proof is very complicate. Using Corollary of page 260, the proof can be greatly
simplified. To do this, we prove the following

Lemma 7. If f, g ∈ F [x] ⊂ K[x]. Write gcdF (f, g) (resp. gcdK(f, g)) the gcd of f, g when they are
viewed as elements of F [x] (resp. of K[x]). Then

gcdF (f, g) = gcdK(f, g).

This was a previous HW problem.

Proof. Suppose that dF = gcdF (f, g) and dK = gcdK(f, g). Recall that this means dFF [x] =
fF [x] + gF [x] and dKK[x] = fK[x] + gK[x]. Since there exists f1, g1 ∈ F [x] with dF = ff1 + gg1,
and ff1 + gg1 ∈ fK[x] + gK[x] = dKK[x], we get dK |dF .

On the other hand, dF |f and dF |g in F [x]. Thus there exists f ′, g′ ∈ F [x] such that f = dF f
′, g =

dF g
′. By definition of dK , there exists f2, g2 ∈ K[x] such that dK = ff2 + gg2 = dF (f ′f2 + g′g2).

Thus dF |dK . We are done. �

Proof of Exercise 12 using Theorems in Section 7.4. LetM = xI−A ∈ Matn×n(F [x]) ⊂ Matn×n(K[x])
and let δk(M ;F ) (resp. δk(M ;K)) be the greatest common divisors of determinants of all k × k
submatrices of M when viewed as a matrix over F (resp. over K). Let p1(F ), . . . , pr(F ) be the
invariant factors of A when viewed as a matrix over F . Similarly, we define pi(K). Section 7.4 told
us that pi(F ) can be computed using δk(M ;F )/δk−1(M ;F ) 1 ≤ k ≤ n. Since gcd are independent
of field extension by last lemma, we get pi(F ) = pi(K). This shows that the rational form of A is
independent of the field we consider. �

Comment: If you learn a little bit more algebra, you will find that the above proof can be simplified
further. In fact, for p ∈ F [x] we have

(0.1) (F [x]/pF [x])⊗F K = K[x]/pK[x].

The cyclic decomposition of Fn is

Fn = Z(α1;T ;F )⊕ · · · ⊕ Z(αr;T ;F )

= F [x]/p1F [x]× · · · × F [x]/prF [x].

After taking tensor product with ⊗FK, we get

Kn = K[x]/p1K[x]× · · · ×K[x]/prK[x].

This shows that the invariant factors of a matrix is independent of field extension. The essential
part of the above proof is just equation (0.1).

Exercise 13: Let A ∈ Matn×n(C) be a matrix such that every eigenvalue of A is real. Show that
A is similar to a matrix with real entries.

Proof. Let pi, 1 ≤ i ≤ r, be the invariant factors of A. Note that each pi is a factor of fA. By
assumption, fA =

∏
(x − ci)ei with each ci ∈ R. Thus each factor of fA has the form

∏
(x − ci)si

with 0 ≤ si ≤ ei, which is in R[x]. Thus pi ∈ R[x] and its companion matrix has entries in R. Thus
the rational form of A has entries in R. �
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Remark 8. Let us compare the terminologies used in Ex 12 and Ex 13. For A,B ∈ Matn×n(F ), then
“A and B are similar over F” means that there exists a matrix P ∈ GLn(F ) such that PAP−1 = B.
See Ex 12. For A ∈ Matn×n(C), then “A is similar to a matrix with real entries” means that there
exists a matrix B ∈Mn×n(R) and there exists a matrix P ∈ GLn(C) such that A = PBP−1. In Ex
13, we can say that A is similar to a matrix B ∈ Matn×n(R) over C, not over R.

Exercise 14: Let T : V → V with dimV < ∞. Show that there is a vector α ∈ V with the
property: if f(T )α = 0 for f ∈ F [x], then f(T ) = 0. Such a vector is called a separating vector
for the algebra F [x]. When T has a cyclic vector, give a direct proof that any cyclic vector is a
separating vector.

Proof. We first assume that T has a cyclic vector, which means V = Z(α;T ) for a cyclic vector α.
We will show that the cyclic vector α is a separating vector. If f(T )α = 0, then f(T )h(T )α = 0
for any h ∈ F [x] (because f(T ) commutes with h(T )). Since V is spanned by h(T )α, we get that
f(T )v = 0 for any v ∈ V . This shows that f(T ) = 0 and thus α is a separating vector.

In general, consider the cyclic decomposition

V = Z(α1;T )⊕ · · · ⊕ Z(αr;T ),

with invariant factors p1, . . . , pr, and pi|pi−1. Note that p1 is the annihilator of α1 and is also
the minimal polynomial of T . We claim that α1 is a separating vector. In fact, if f ∈ F [x] and
f(T )α1 = 0, we have f ∈ ST (α1; 0) = p1F [x]. Thus f = p1g for some g ∈ F [x]. We have
f(T ) = p1(T )g(T ) = 0 since p1(T ) = 0. (One can also show that f(T )αi = 0 for all i ≥ 1 directly
using pi|p1 and thus pi|f . This also implies that f(T )v = 0 for any v ∈ V .) �

Exercise 15: This is the above Lemma 6.

Exercise 16: Let A be an n × n matrix with real entries such that A2 + I = 0. Prove that n is
even, and if n = 2k, then A is similar over the field of real numbers to a matrix of the block form[

0 −I
I 0

]
,

where I is the k × k identity matrix.

Proof. Let V = Rn and T : V → V be the linear operator defined by Tx = Ax. Here an element in V
is viewed as a column vector. Since A2 + I = 0, we get T 2 + I = 0. Thus f = x2 +1 ∈ I(T ) and thus
the minimal polynomial µT divides f . Since f is irreducible and µT 6= 1, we get µT = f = x2 + 1.
Let

V = Z(α1;T )⊕ Z(α2;T ) · · · ⊕ Z(αk;T )

be the cyclic decomposition of V with α1, . . . , αk ∈ V . Let pi be the T -annihilators of αi, namely,
p1, . . . , pk are the invariant factors of T . We have p1 = µT = x2 + 1 and pi|pi−1 for i ≥ 2. Since p1
is irreducible, we have pi = x2 + 1 for each i. Since dimZ(αi;T ) = deg(pi) = 2, we get dimV = 2k
is even. Let βi = Tαi. Then {αi, βi} is a basis of Z(αi;T ). Let B = {α1, . . . , αk, β1, . . . , βk}, which
is an ordered basis of V . Note that Tαi = βi, Tβi = T 2αi = −αi. We get

[T ]B =

[
0 −I
I 0

]
.

�

Exercise 17: Let T be a linear operator on a finite-dimensional vector space V . Suppose that

(a) the minimal polynomial for T is a power of an irreducible polynomial;
(b) the minimal polynomial is equal to the characteristic polynomial.

Show that no non-trivial T -invariant subspace has a complementary T -invariant subspace.
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Proof. We prove this by contradiction. Suppose that W1 is a T -invariant nontrivial subspace (W1 6=
0,W1 6= V ) and W1 has a complementary T -invariant subspace W2. Let Bi be an ordered basis of
Wi. Then B = B1 ∪ B2 is an ordered basis of V . Assume Ai = [T ]Bi

, we get

[T ]B =

[
A1 0
0 A2

]
.

This shows that χT = χT1
χT2

, where Ti = T |Wi
and χT denotes the characteristic polynomial of T .

The assumption says that χT = pr for an irreducible polynomial of p and a positive integer r. Thus
χTi = pri with ri > 0, r1 + r2 = r. Let µTi be the minimal polynomial of Ti. Then µTi |χTi . Thus
µTi

= psi for some integer si with 1 ≤ si ≤ ri. Let s = max {s1, s2} and g = ps ∈ F [x]. By the
choice of s, we have g(A1) = g(A2) = 0. Note that for any polynomial h ∈ F [x], we have

h([T ]B) =

[
h(A1)

h(A2)

]
.

(Check this for monomials xn first, which follows from a simple block matrix calculation.) In
particular, since g(A1) = g(A2) = 0, we have g([T ]B) = 0. This shows that the minimal polynomial
of T divides g = ps (actually it is clear that the minimal polynomial is exactly g = ps). Now since
s < s1 + s2 ≤ r1 + r2, we have g 6= χT = pr. This contradicts assumption (b). �

Exercise 18: If T is a diagonalizable linear operator, then every T -invariant subspace has a com-
plementary T -invariant subspace.

Proof. Let W ⊂ V be a T -invariant subspace. We first show that T |W is diagonalizable. In fact
µT |W divides µT , which is a product of distinct linear factors. This shows that T |W is diagonalizable.

Let c1, . . . , ck be distinct eigenvalues of T and let ET (ci) = ker(T − ciI). The condition T is
diagonalizable means that

V = ET (c1)⊕ · · · ⊕ ET (ck).

Let B′1 = {α1, . . . , αs} be a basis of W which consists of eigenvectors of T . We can assume this
because T |W is diagonalizable. Since all distinct eigenvalues of T are c1, . . . , ck, we have Tαj =
cijαj for some index ij with 1 ≤ ij ≤ k. After re-arrangement if necessary, we can assume that
α1, . . . , αs1 ∈ ET (c1), αs1+1, . . . , αs2 ∈ ET (c2), . . . , αsk−1+1, . . . , αsk ∈ ET (ck). Here sk = s. Assume
that dimET (ci) = ri, then ri ≥ si. Since αi are linearly independent, we can extend αsi−1+1, . . . , αsi
to a basis

αsi−1+1, . . . , αsi , βsi+1, . . . , βri
of ET (ci). Let W ′ = Span {βsi+1, . . . , βri : 1 ≤ i ≤ k}. Then clearly V = W ⊕W ′ and W ′ is T -
invariant. (Here W ′ is T -invariant because it has a basis which consists of eigenvectors of T ). �

A different proof. This exercise is a special case of Theorem 11 (page 264) of the textbook. The
following is a proof based on the proof of Theorem 11.

Since T is diagonalizable, the minimal polynomial µT = (x−c1) . . . (x−ck) for distinct c1, . . . , ck.
Assume that χT = (x−c1)r1 . . . (x−ck)rk is the characteristic polynomial of T . Let V = W1⊕· · ·⊕Wk

be the primary decomposition of V , namely, Wi = ker(T − ciI)ri . Let W be a T -invariant subspace
of V . We first claim that

W = (W ∩W1)⊕ · · · ⊕ (W ∩Wk).

In fact, for any α ∈W , we can write α = α1 + · · ·+ αk with each αi ∈Wi. Let Ei : V →Wi be the
projection map, which is known to have the form hi(T ) for a polynomial hi, see Corollary in page
221. We have αi = Eiα = hi(T )α ∈W since W is T -invariant. This shows the above decomposition.

Next, we show that each W ∩Wi has a T -invariant complement in Wi. For this, it suffices to show
that W ∩Wi is T -admissible subspace of Wi, namely, if f ∈ F [x], α ∈Wi with f(T )α ∈W ∩Wi, then
there exists β ∈ W ∩Wi such that f(T )α = f(T )β . Note that, for α ∈ Wi, we have Tα = ciα and
thus f(T )α = f(ci)α. Suppose for some α ∈Wi and f ∈ F [x], we have f(T )α = f(ci)α ∈Wi∩W . If
f(ci) = 0, we just take β = 0, which satisfies f(T )α = f(T )β = 0. If f(ci) 6= 0, the above condition
means that α ∈W ∩Wi, and we just take β = α, which satisfies f(T )α = f(T )β.

Thus for each i, there is a T -invariant subspace W ′i ⊂Wi such that

Wi = (W ∩Wi)⊕W ′i .
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Take W ′ = W ′1 ⊕ · · · ⊕W ′k, which is still T -invariant. The above shows that

V = W1 ⊕ · · · ⊕Wk =
⊕
i

(W ∩Wi)⊕W ′i = W ⊕W ′.

This finishes the proof. �

Remark 9. If T is diagonalizable, we actually have Wi = Ker(T − ciI)ri = Ker(T − ciI). Thus the
decompositions used in the above two different proofs are the same. Moreover, the first solution
gives a direct proof that W ∩Wi has a complement in Wi. Essentially, the above two proofs are the
same. Apparently, the second approach works for more general case.

Exercise 19: Let T be a linear operator on the finite dimensional space V . Prove that T has a
cyclic vector if and only if the following is true: Every linear operator U which commutes with T is
a polynomial in T .

Proof. We assume that T has a cyclic vector α. Let U : V → V be a linear operator such that
TU = UT . Note that, we have UT 2 = UTT = TUT = T 2U . Similarly, it is easy to check
that UT i = T iU for any i ≥ 0. Since α is a cyclic vector, V = Span

{
α, Tα, . . . , Tn−1α

}
, where

n = dimV. Since U(α) ∈ V , we can write

U(α) = a0α+ · · ·+ an−1T
n−1α,

for some a0, a1, . . . , an−1 ∈ F . (Here there is no requirement for ai. If U is the zero operator, then
all ai are zero. If U is nonzero, there is at least one ai is nonzero.)

Let g = a0 + a1x+ · · ·+ an−1x
n−1 ∈ F [x]. By choice, we have

Uα = g(T )α.

We claim that U = g(T ), namely, Uβ = g(T )β for all β ∈ V . Actually this follows easily
from the above equation and the fact that V = Z(α;T ). Here are some details. Since V =
Span

{
α, Tα, . . . , Tn−1α

}
, it suffices to show that

U(T iα) = g(T )(T iα), i = 0, 1, . . . , n− 1.

For i = 0, this follows from the definition of g. If i = 1, we have

U(Tα) = TU(α) = T (g(T )α) = g(T )(Tα).

Similarly, for any i > 0, we have

U(T iα) = T i(Uα) = T i(g(T )α) = g(T )(T iα).

This shows that U = g(T ).
Conversely, suppose that T does not have a cyclic vector, we will construct a linear operator

U : V → V , which is not a polynomial of T . Consider the cyclic decomposition of V :

V = Z(α1;T )⊕ Z(α2;T )⊕ · · · ⊕ Z(αr;T ),

as in the cyclic decomposition theorem. The condition “T does not have a cyclic vector” implies
that r ≥ 2. Let pi be the annihilator of αi, we have p2|p1.

Let U = E2, the projection operator of V onto Z(α2;T ). Then UT = TU . This can be checked
easily or it follows from Theorem 10, p214. We prove that U is not a polynomial of T by contradiction.
Suppose that U = g(T ) for a polynomial g ∈ F [x]. Note that for any α ∈ Z(α1;T ), we have
g(T )α = Uα = 0. Thus p1|g because p1 is the annihilator of α1. On the other hand, p2|p1 and thus
p2|g. This means that g is a multiple of the annihilator of α2. Thus g(T )α2 = 0. This contradicts
to Uα2 = α2. We are done. �

Exercise 20: Let V be a finite dimensional vector space over the field F and T : V → V be a linear
operator. We ask when it is true that every non-zero vector in V is a cyclic vector for T . Prove that
this is the case if and only if the characteristic polynomial for T is irreducible over F .
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Proof. Assume that the characteristic polynomial χT of T is irreducible in F [x]. In particular,
µT = χT . Given any α ∈ V, α 6= 0, we need to show that Z(α;T ) = V . Let pα be the T -annihilator
of α, we have pα|µT . But µT is irreducible, and thus we have pα = µT . Thus dimF Z(α;T ) =
deg(pα) = deg(χT ) = dimV . We have Z(α;T ) = V .

Conversely, suppose that every nonzero vector in V is a cyclic vector. Take α 6= 0, we have V =
Z(α;T ). Suppose that µT is reducible, namely, µT = gh with g, h ∈ F [x], deg(g) = k < n, deg(h) =
m < n, where n = dimV . Consider the vector β = g(T )α 6= 0. Since h(T )β = µT (T )α = 0, the
T -annihilator pβ of β divides h(T ). By Theorem 1 of page 228, we have dimZ(β;T ) = deg(pβ) ≤
deg h = m < n. Thus Z(β;T ) 6= V and β is not a cyclic vector of V . �

Exercise 21: Let A ∈ Matn×n(R). Let T : Rn → Rn be the operator defined by A and U : Cn → Cn
be the operator defined by A. If the only subspaces invariant under T are Rn and the zero subspace,
then U is diagonalizable.

Proof. Let α ∈ Rn be any nonzero vector and consider Z(α;T ). Since Z(α;T ) is a nonzero T -
invariant subspace of Rn, the assumption says that Z(α;T ) = Rn. This shows that every nonzero
vector of Rn is a cyclic vector. Exercise 20 says that µT = χT is irreducible. We know that any
irreducible polynomial over R is either linear or quadratic ax2 + bx+ c with a, b, c ∈ R, b2− 4ac < 0.
Either case, µT = χT has no repeated roots over C. Thus U is diagonalizable. Note that µU =
µA = µT , namely no matter if you see A as a matrix over R or over C, its minimal polynomial is
the same. See Exercise 12. �

Remark 10. Exercise 21 seems too easy because in this case we can only have n = 1 or 2. The
following general case is true. Let F be a field of characteristic 0 and A ∈ Matn×n(F ). Suppose that
F is an algebraically closed field such that F ⊂ F . (Example: F is Q or

{
a+ bα+ cα2 : a, b, c ∈ Q

}
with α3 = 2, α ∈ R; and F = C.) Let T : Fn → Fn be the linear operator defined by A. If the only
subspaces invariant under T are 0 and Fn itself, then A is diagonalizable over F . In this general
case, the dimension of V can be arbitrary. The proof is the same as the above once we know the
following fact: if F has characteristic zero and f ∈ F [x] is irreducible, then f has no repeated roots
over F . See Lemma of page 266 and Theorem 12 for its generalizations. If characteristic of F is
finite, the above is false. In fact, if characteristic of F is finite, it is possible to find irreducible
polynomial f ∈ F [x], such that over an algebraic closure of F , f = (x− c)p for some positive integer
p.
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