EXERCISES 7.2: SOLUTIONS

Disclaimer: These are my own solutions. It is possible that it contains some fatal errors. I
appreciate it if you let me know any errors you find.

General notations: For a linear operator T € End(V), pr denotes its minimal polynomial
and yr denotes its characteristic polynomial. For a T-invariant subspace W C V, the notation
St(o; W) denotes the ideal {f € F[z] : f(T)o € W}, which is called the conductor of « into W. In
particular, if W =0, St(a;0) = {f : f(T)a = 0}. This the T-annihilator of a, and it is also denoted
by M(a;T) in §7.1. Let I(T) = NpevSt(e;0) = {f € Flz] : f(T)a =0,Va € V}. Note that pr is
the monic generator of I(T).

Exercise 2: Let T : V — V be a linear operator on a finite dimensional vector space V. Let R be
the range of 7' and N be the null space of T'. (a) Prove that R has a complementary T-invariant
subspace if and only if R is independent of N. (b) If R and N are independent, prove that N is the
unique T-invariant subspace complementary to R.

Proof. (a) The dimension theorem says that dim R+dim N = dim V. If R and N are independent, we
have RN N = {0} and thus dim(R+ N) = dim R+ dim(N) = dim(V'), by dimension theorem. Thus
V =R+ N. Since NNR =0, we get V= R® N. Note that N is clearly T-invariant. Thus R has a
T-invariant complementary subspace. Conversely, suppose that R has a T-invariant complementary
subspace, and thus R is admissible. For any a € V', we have Ta € R. The admissibility shows that
there exists a § € R such that Ta =T3. Thus a — 3 € N. The equation o = 4+ o — 3 implies that
V = R+ N. This means that dim(RNN) =dim R+ dim N —dim(R+ N) = 0. Thus RN N = {0}.

(b) Suppose that V = R@® W for a T-invariant subspace W C V. We will show that W = N.
Take o € W, we have Ta € W since W is T-invariant. On the other hand, Ta € R by definition.
Thus Tao € RNW = {0}, which implies that T = 0 and aw € N. Thus W C N. On the other hand,
we know that dimW = dimV — dim R = dim N. We must have W = N. |

Exercise 8: Let T : R? — R3 be the linear operator given by the matrix

3 -4 —4
-1 3 2
2 -4 -3
Find nonzero vectors ag, . .., a, satisfying the conditions of Theorem 3.

Proof. We can compute that xyr = (r—1)% and ur = (z—1)2. Thus we have V = Z(a1; T)®Z(az; T)
and p; = (z — 1)%,p2 = (z — 1). Note that ay is an eigenvector of 1, ay is in ker(p;(T)) but not
an eigenvector of 1, but Z(aq;7T) contains an eigenvector of 1. Since dim Z(«ay;7T) = 2, we have
Tay # ay, but (T — I)?a; = 0. We first compute the eigenspace of 1, namely, Er(1) = ker(T — I).
A simple calculation shows that

2y + 2z
ET(]-): Y Iy,ZGR
z

Since (T — I)? = 0, a; can be taken as any vector with oy ¢ E7(1). For example, we can take

1 2
a1 = |0|. In this case (T'— I)ay = |—1|. The vector as can be taken as any vector in Ep(1)
0 2
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2
which is not proportional to (T — I)«;. For example, we can take ag = |1|. The choices of oy, s
0

are not unique. O

Exercise 9: Let A be the real matrix

1 3 3
A=13 1 3
-3 -3 =5

Find an invertible real matrix P € GL3(R) such that P~'AP is in rational form.

Proof. Let T : R — R3 be the linear operator defined by A. We can compute the characteristic
polynomial of T' is x7 = (x +2)?(x — 1) and its minimal polynomial is pr = (2 +2)(x —1). We have
V =Z(a;;T)® Z(a;T), with p1 = (x + 2)(z — 1) and ps = x + 2. Similar as the last problem, we
can take a; arbitrary other than eigenvectors of 1 or —2, and ay an eigenvector of —2. Take

o = [1,0,00", Tay = [1,3,-3]"; a2 = [1,-1,0]7,

and
1 1 1
P= [Oél,TOzl,OéQ] =10 3 -1
0 -3 0
Then we have
0o 2 0
AP=P |1 -1 0
0 0 -2
Again, the choice of P is not unique. a

Exercise 11: Prove that if A and B are 3 x 3 matrices over the field F, A is similar to B if and
only if they have the same characteristic polynomial and the same minimal polynomial. Give an
example which shows that this is false for 4 x 4 matrices.

Proof. If A and B are similar, then clearly they have the same characteristic and minimal polynomial
(for the minimal polynomial part, it is easy to check I(T4) = I(Tg). A different argument is:
A, B represent the same linear operators with different choice of basis). Now suppose that A, B €
Matsxs(F') such that x4 = xp and pa = pp. To show that A and B are similar, it suffices to show
that A and B have the same invariant factors. We know that deg x4 = 3 and we discuss degree
of ua. If deg(pa) = 3, then pa = xa, and thus A has only a single invariant factor, which is pa.
The same is true for B. The assumption shows that A, B have the same invariant factors. Next,
we assume that deg(pua) = 2. In this case, x4 = paga for a degree one factor g4 and the invariant
factors of A are {ua,q4 = xa/ua}t. Again, the assumption shows that A and B have the same
invariant factors. Finally, assume that deg(ua) = 1. Assume that ug = (z — a) for some a € F.
This implies that A — al3 = 0 and thus A = al3. Since ugp = pa, we also have B = al3. Thus
A = B in this case.

In the 4 x 4 case, we can take A such that its invariant factors are 22, x, 2 and take B such that
its invariant factors are z2,22. Note that pus = pup = 22,x4 = x5 = z*. But A and B are not
similar, because they have different invariant factors. Such matrices can be realized by

0 0 0 O 00 00
10 0 0 1 0 00
A= 0 0 0 0" B = 00 0O
0 0 0O 00 10

]

Exercise 12: Let F' be a subfield of the field of complex numbers, and let A, B € Mat,,x,(F).

Prove that A and B are similar over the field of complex numbers, then they are similar over F.
We did not talk about how linear algebra behaves under field extension. Here we prove some simple

useful facts regarding this problem. In the following, K is a field and F' is a subfield of K, which
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means F' is a subset of K and together with the addition and multiplication defined on K, F'is also a
field. You can think K = C, F is either Q or R; or K = {a+ba+ca2 ca=1/2,a,b,ce Q} JF=Q.

Lemma 1. Let A € Mat,,xn(F). If Az = 0 has a nonzero solution x € K™, then Az = 0 has a
nonzero solution in F™. Moreover, we have dimg {x € K™ : Ax =0} = dimp {z € F" : Az = 0}.

Note that F C K, it is natural to view A as an element in Mat,,«,(K) and thus we can talk
about solutions of Az =0 in K™.

Proof. Let R € Mat,,«n(F) be the row reduced echelon form of A. The key observation is when R
is viewed as an element in Mat,, x,(K), it is still in row reduced echelon form. Since row reduced
echelon form is unique (see Corollary of page 58 of the textbook), R is also the row echelon form
of A when A is viewed as matrix in Mat,,x,(/K). Note that Az = 0 has a nonzero solution in
K™ iff Rz = 0 has a nonzero solution in K™ iff the number of leading ones in R is less than n, or
rank(R) < n. Thus Az = 0 has a nonzero solution in F™. Actually, the key observation shows that
rankp(A) = rankg (A), where rank g (A) denotes the rank of A when it is viewed as a matrix over
K. The “moreover” part follows from

dimg {z € K" : Ax =0} = n —rank(R) = dimp {z € F" : Az =0}.
]

Remark 2. The above proof used the fact that: after elementary row operations, every matrix A
can be reduced to an elementary row echelon form R, and the linear system Ax = 0 is equivalent to
Rx = 0. In particular, the elementary operation R; — cR; (replacing a row by ¢ times this row) for
¢ # 0 is invertible. This is a property of field. Think about the following example. Let K = Z/6Z,
which consists of elements k for 0 < k < 5 and k € Z. Here k = k + 6Z denotes the equivalence
class. Consider its subset F' = {6,5} C K. Tt should be easy to see that F' is a field with the usual
operations. In fact, F' = F5, which is field consisting 2 elements. Note that K is not a field because
3,2 € K are nonzero, but 3 -2 = 0. Now consider the linear equation

r+x+2x=0.

Note that the above equation has a nontrivial solution z = 2 over K, but it does not have nontrivial
solution over F'. If you tried to go through the above proof, you will find that the main issue here
is: while 3 is nonzero in K, it is not invertible in K.

Remark 3. In the terminology you will learn later, Lemma 1 can be restated as follows:
ker(Th) @ K = ker(Ty ®@r K),
where Ty : F™ — F™ is the usual linear map defined by A and T4 ®p K is the linear map
F'"p K=K"— K™ =F"®p K. In other words, the short sequence
0= ker(Ty) @p K - K" - K™
is still exact. This reflects the fact that K is a flat F-module.

Lemma 4. Let S = {a1,...,a.} € F". If S is linearly dependent over K, then it is also linearly
dependent over F.

Since F™ C K", S can be viewed as a subset of K™ and thus we can consider linearly dependence
of S over K.

Proof. Let A be the matrix A = [aq,...,q,;] € Mat,x,(F) C Mat,x,(K). The assumption says
that Az = 0 has a nonzero solution in K”. By Lemma 1, Az = 0 has a nontrivial solution in F",
which is equivalent to say that S is linearly dependent over F'. (]

First proof of Ezercise 12. In this proof, we assume that the characteristic of K is zero, which is
true if K = C as in the assumption of Ex 12. Later, we will see that this assumption is unnecessary.
Let Vi = {X € Myxn(K): AX = XB} and Vg = {X € M, x,(F) : AX = XB}. The assumption
says that Vi is not the zero space. Thus by Lemma 1, dimp Vr = dimg Vx > 1. Let B =
{a1,...,ar € Vi} be an F-basis of Vp. By Lemma 4, 1, ..., a are also linearly independent over
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K. Let W = {Zle oy C € K} be the K-span of B. Then W C Vi and dimg W =k > 1.
Lemma 1 says that dimp Vr = dimg Vg, and thus we have W = Vi by counting dimension. We
need to show there exists a matrix Q € Vg such that det(Q) # 0.

Consider the determinant function det : M, «,(K) — K and restrict it to V. The assumption
says that there exists a matrix P € Vi such that det(P) # 0. For a general element X = Zle T
with z; € F,o; € B, a general fact says that det(X) = det(Zf:1 x;a;) is a polynomial f on the
variables 1, ..., xy, whose coefficients are in F. In other words, f € F|xi,...,2x]. A very special
case is when k£ = 1 and in this case, det(x1a1) = det(aq)z}]. The assumption says that there exists
Z1,...,2, € K such that f(z1,...,z5) # 0, and thus this polynomial f is nonzero. Since F' has
characteristic zero, there must be y1,...,yr € F such that f(y1,...,yx) # 0 (see Theorem 3, page
126 for this fact when there is only one variable). Note that Q = Zle y;o; € Vp and det(Q) # 0.
We are done. |

Remark 5. The above proof used some facts on determinant and polynomials of several variables.
Moreover, it only works when characteristic of F is zero. See the following for a proof which works
for more general situations.

Lemma 6. Let A € Mat, x,,(F), and let pa r (resp. pa,ix) denote the minimal polynomial of A
when viewed as a matriz over F (resp. over K ). Then piar = pa K-

This fact is proved in page 192, but we did not cover the proof in class.

Proof. Denote I(A,F) = {f € Flz]: f(A) =0} and I(A,K) = {f € K[z]: f(A) =0}. Then by
definition I(A, F) = pa pFlz],I1(A, K) = pa kg K[z]. Note that pa r € I(A, K) since pa,r(4) =0
and pa p € Fz] C K[z]. This shows that pa x|pa r. Suppose that deg(pa k) = r, then

S={I,A,..., A"}
is linearly dependent over K. Thus Lemma 4 shows that S is also linearly dependent over F'. This

shows that A satisfies a polynomial f € F|x] with deg(f) = 7. This shows deg(uar) < r =
deg(pa,kx). This condition plus pa g|wa,r imply that pa x = pa,r. O

Second proof of Exercise 12. Actually, the complex field C can be replaced by any field K such that
F C K. In the following argument, we just replace C by K. We first show that the rational
form for A is the same whether A is viewed as a matrix over F' or over K. We consider the cyclic
decomposition of T': F™ — F" where Tax = Ax. We have

F"=Z(a;T;F)® - & Z(a; T F),

with invariant factors p1,pa,...,pr € Flx], pi|pi—1, where Z(a;; T, F) = {f(T)«; : f € Flz]}. Thus
the canonical rational form of A (as a matrix in M, «,(F)) is
Ar
R = . . )
Ay
where A; is the companion matrix of p;.

Let T; : Z(o; T; F) — Z(ay; T F) be the restriction of T to Z(ay; A; F'). By Theorem 1 of page
228, p; is the minimal polynomial of T}, namely, p; = pr, r. Here we add an F' in the subscript to
emphasize that everything is viewed as an F-vector space. By Lemma 6, we also have p; = ur, k,
namely p; is the minimal polynomial of T; : Z(«a;; T; K) — Z(ay; T; K), when T; is viewed as a linear
operators of K-vector space. In particular, this shows that

dimg Z(a;; Ty K) = degp; = dimp Z(a;; T3 F).

Assume that deg(p;) = d;. Consider the basis B; = {ozi, Tay,... ,Tdi_lai} of Z(a;; T; F). Note that
B; C Z(«a;; T; K), and by Lemma 4, B; is linearly independent over K. Since dimg Z(o; T; K) = d;,
B; is also a K-basis of Z(«;;T; K). Now consider B = {Bj,..., B}, which is an F-basis of F"™ by
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Lemma page 209. Since the set B is linearly independent over F', it’s linearly independent over K
by Lemma 4 again. Since |B| =n,B C F™ C K™ and B is K-linearly independent, we get that

K'"=Z(a;;T;K)® - @& Z(ar; T, K)

by Lemma page 209. Thus the above is indeed the cyclic decomposition of K™ by the uniqueness
part of Theorem 3, page 233, and the invariant factors are still py,...,p,. Thus the rational form
of A (when viewed as a matrix in Mat,, x, (K)) is still R.

Now suppose that A, B € Mat,,«,,(F') such that A and B are similar over K. This means that the
rational form of A over K is the same as the rational form of B over K. By the above discussion,
the rational forms of A, B over I are also the same. Thus A and B are similar over F. O

The above proof is very complicate. Using Corollary of page 260, the proof can be greatly
simplified. To do this, we prove the following

Lemma 7. If f,g € Flx] C K[z]. Write gedr(f,g) (resp. gedi (f,q)) the ged of f,g when they are
viewed as elements of F[x| (resp. of K[x]). Then

gedr(f,9) = gedk (f, 9)-

This was a previous HW problem.

Proof. Suppose that dp = gedp(f,g) and dx = gedx(f,g). Recall that this means dpFlx] =
fF[z] + gF[z] and dx K[z] = fK|[z] + gK|[z]. Since there exists f1,91 € Flz] with dp = ff1 + gg1,
and ff1 +gg1 € fK[x] + gK[z] = dx K[x], we get dg|dp.

On the other hand, dr|f and dr|g in F[z]. Thus there exists f’, ¢’ € F[z] such that f =dpf’',g =
drg'. By definition of dg, there exists fo,g2 € K[x] such that dx = ffo + gg2 = dr(f'fo + ¢'go)-
Thus dp|dx. We are done. O

Proof of Exercise 12 using Theorems in Section 7.4. Let M = xI—A € Maty, xn(F[z]) C Mat,xn (K[z])
and let §;(M; F) (resp. 6x(M; K)) be the greatest common divisors of determinants of all k x k
submatrices of M when viewed as a matrix over F' (resp. over K). Let pi(F),...,p.(F) be the
invariant factors of A when viewed as a matrix over F'. Similarly, we define p;(K). Section 7.4 told
us that p;(F) can be computed using d,(M; F)/dr—1(M; F) 1 < k < n. Since ged are independent
of field extension by last lemma, we get p;(F) = p;(K). This shows that the rational form of A is
independent of the field we consider. O

Comment: If you learn a little bit more algebra, you will find that the above proof can be simplified
further. In fact, for p € F[z] we have

(0.1) (Flzl/pFlz]) ®F K = Klz]/pK|z].
The cyclic decomposition of F™ is
F'"=Z(a; T, F)& - @ Z(ay; T F)
= Flzl/prFlx] x - x Fla]/p, Flx].
After taking tensor product with @ p K, we get
K" = Kla] /piK[a] % -+ x Kla]/p, K[a].

This shows that the invariant factors of a matrix is independent of field extension. The essential
part of the above proof is just equation (0.1).

Exercise 13: Let A € Mat, «,(C) be a matrix such that every eigenvalue of A is real. Show that
A is similar to a matrix with real entries.

Proof. Let p;,1 < i < r, be the invariant factors of A. Note that each p; is a factor of f4. By
assumption, f4 = [[(z — ¢;)® with each ¢; € R. Thus each factor of f4 has the form [[(z — ¢;)*
with 0 <'s; < e;, which is in R[z]. Thus p; € R[z] and its companion matrix has entries in R. Thus
the rational form of A has entries in R. O
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Remark 8. Let us compare the terminologies used in Ex 12 and Ex 13. For A, B € Mat,, x»(F'), then
“A and B are similar over F” means that there exists a matrix P € GL,,(F) such that PAP~! = B.
See Ex 12. For A € Mat,, x,(C), then “A is similar to a matrix with real entries” means that there
exists a matrix B € M, x,,(R) and there exists a matrix P € GL,,(C) such that A = PBP~!. In Ex
13, we can say that A is similar to a matrix B € Mat,,«,(R) over C, not over R.

Exercise 14: Let T : V — V with dimV < oo. Show that there is a vector o € V with the
property: if f(T)a = 0 for f € F[z], then f(T) = 0. Such a vector is called a separating vector
for the algebra F[z]. When T has a cyclic vector, give a direct proof that any cyclic vector is a
separating vector.

Proof. We first assume that T has a cyclic vector, which means V = Z(a;T) for a cyclic vector a.
We will show that the cyclic vector « is a separating vector. If f(T)a = 0, then f(T)h(T)a =0
for any h € F[z] (because f(T') commutes with h(T)). Since V is spanned by h(T)a, we get that
f(T)v =0 for any v € V. This shows that f(7T) = 0 and thus « is a separating vector.

In general, consider the cyclic decomposition

V=Za;T)® & Z(a; T),

with invariant factors pi,...,p,, and p;|pi—1. Note that p; is the annihilator of a; and is also
the minimal polynomial of T. We claim that oy is a separating vector. In fact, if f € F[z] and
f(M)ay = 0, we have f € Sp(a1;0) = p1Flx]. Thus f = pig for some g € F[z]. We have
f(T) = p1(T)g(T) = 0 since p1(T) = 0. (One can also show that f(T)a; = 0 for all ¢ > 1 directly
using p;|p1 and thus p;|f. This also implies that f(T)v =0 for any v € V) |

Exercise 15: This is the above Lemma 6.

Exercise 16: Let A be an n x n matrix with real entries such that A2 + I = 0. Prove that n is
even, and if n = 2k, then A is similar over the field of real numbers to a matrix of the block form

il

Proof. Let V. =R"and T : V. — V be the linear operator defined by Tx = Az. Here an element in V'
is viewed as a column vector. Since A% +1 =0, we get 7% +1 = 0. Thus f = 22 +1 € I(T) and thus
the minimal polynomial uz divides f. Since f is irreducible and ur # 1, we get ur = f = 22 + 1.
Let

where [ is the k x k identity matrix.

V=Z(a;T)® Z(a;T) - ® Z(ay; T)

be the cyclic decomposition of V' with a1,...,ar € V. Let p; be the T-annihilators of «;, namely,
P1,- .-, Pk are the invariant factors of T. We have p; = ur = 22 + 1 and p;|p;_; for i > 2. Since p;
is irreducible, we have p; = 22 + 1 for each i. Since dim Z(«a;; T) = deg(p;) = 2, we get dim V = 2k
is even. Let 8; = Ta;. Then {ay, 8;} is a basis of Z(a;;T). Let B = {ay,...,a,b1,...,0k}, which
is an ordered basis of V. Note that To; = 8;, T8 = T?o; = —a;. We get

[T]s = [g _OI} -

Exercise 17: Let T be a linear operator on a finite-dimensional vector space V. Suppose that

(a) the minimal polynomial for T is a power of an irreducible polynomial;
(b) the minimal polynomial is equal to the characteristic polynomial.

Show that no non-trivial T-invariant subspace has a complementary T-invariant subspace.
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Proof. We prove this by contradiction. Suppose that W is a T-invariant nontrivial subspace (W7 #
0,W; # V) and W; has a complementary T-invariant subspace Wa. Let B; be an ordered basis of
W;. Then B = By U By is an ordered basis of V. Assume A; = [T)]g,, we get
A 0

This shows that x7 = x1y, x1,, Where T; = T'|w, and yr denotes the characteristic polynomial of T
The assumption says that yp = p” for an irreducible polynomial of p and a positive integer . Thus
X1, = p" with r; > 0,71 + 12 = r. Let up, be the minimal polynomial of T;. Then pg,|x7,. Thus
ur, = p% for some integer s; with 1 < s; < r;. Let s = max{s1,s2} and g = p° € F[z]. By the
choice of s, we have g(A4;) = g(Az) = 0. Note that for any polynomial h € F[z], we have

h(A1)

h([T)B) = .

() = "

(Check this for monomials 2™ first, which follows from a simple block matrix calculation.) In
particular, since g(A;) = g(A2) = 0, we have g([T]|g) = 0. This shows that the minimal polynomial
of T divides g = p® (actually it is clear that the minimal polynomial is exactly g = p*). Now since
s < 81+ 82 <711+ 1o, we have g # x7 = p”. This contradicts assumption (b). O

Exercise 18: If T' is a diagonalizable linear operator, then every T-invariant subspace has a com-
plementary T-invariant subspace.

Proof. Let W C V be a T-invariant subspace. We first show that T'|y is diagonalizable. In fact
)y, divides pr, which is a product of distinct linear factors. This shows that T’y is diagonalizable.

Let c1,...,c, be distinct eigenvalues of T' and let Ep(c;) = ker(T — ¢;I). The condition T is
diagonalizable means that

V= ET(Cl) oD ET(Ck).
Let Bf = {a1,...,as} be a basis of W which consists of eigenvectors of 7. We can assume this
because T'|y is diagonalizable. Since all distinct eigenvalues of T' are c,...,ci, we have To; =
Ci; O for some index i; with 1 < 4; < k. After re-arrangement if necessary, we can assume that
a1,y 0 € BEp(C1),Qsy 41,05y € Er(ca), .oy Qsy_41,-- 505, € Ep(c). Here s, = s. Assume
that dim Er(¢;) = 4, then r; > s;. Since o are linearly independent, we can extend oy, ,41,-..,Qs,
to a basis
g, 141y - 7asi7ﬁsi+17 sy Bri

of Er(c;). Let W' = Span{Bs,+1,-..,0r, : 1 <i < k}. Then clearly V.= W & W’ and W' is T-
invariant. (Here W' is T-invariant because it has a basis which consists of eigenvectors of 7). O

A different proof. This exercise is a special case of Theorem 11 (page 264) of the textbook. The
following is a proof based on the proof of Theorem 11.

Since T is diagonalizable, the minimal polynomial puyr = (x —¢1) ... (x —¢g) for distinct ¢q, ..., cg.
Assume that xyp = (x—c1)™ ... (z—ck)"™ is the characteristic polynomial of T'. Let V = W1 ®- - -@Wj
be the primary decomposition of V, namely, W; = ker(T — ¢;I)"*. Let W be a T-invariant subspace
of V. We first claim that

W=WnWwy)e---o(WnWy).
In fact, for any a € W, we can write @« = a1 + - - - + oy, with each «; € W;. Let E; : V. — W, be the
projection map, which is known to have the form h;(T) for a polynomial h;, see Corollary in page
221. We have a; = E;a = hiy(T)a € W since W is T-invariant. This shows the above decomposition.

Next, we show that each W NW,; has a T-invariant complement in W;. For this, it suffices to show
that W NW,; is T-admissible subspace of W;, namely, if f € Fz],a € W; with f(T)a € WNW;, then
there exists 8 € W N W; such that f(T)a = f(T)5 . Note that, for o € W;, we have Ta = ¢;o and
thus f(T)a = f(¢;)a. Suppose for some o € W; and f € F[z], we have f(T)a = f(c;)a € W,NW. If
f(e;) =0, we just take 8 = 0, which satisfies f(T)a = f(T) = 0. If f(c¢;) # 0, the above condition
means that o € W N W;, and we just take § = «, which satisfies f(T)a = f(T)5.

Thus for each ¢, there is a T-invariant subspace W/ C W; such that

W, =Wnw,) e W,.
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Take W' = W{ @ --- @ W, which is still T-invariant. The above shows that

VW& oW, =PWnw)ew,=waew.

This finishes the proof. (|

Remark 9. If T is diagonalizable, we actually have W; = Ker(T — ¢;I)" = Ker(T — ¢;I). Thus the
decompositions used in the above two different proofs are the same. Moreover, the first solution
gives a direct proof that W N W; has a complement in W,. Essentially, the above two proofs are the
same. Apparently, the second approach works for more general case.

Exercise 19: Let T be a linear operator on the finite dimensional space V. Prove that T has a
cyclic vector if and only if the following is true: Every linear operator U which commutes with T is
a polynomial in T'.

Proof. We assume that T has a cyclic vector a. Let U : V' — V be a linear operator such that
TU = UT. Note that, we have UT? = UTT = TUT = T?U. Similarly, it is easy to check
that UT? = T°U for any i > 0. Since « is a cyclic vector, V = Span{a,Ta, . ,T"‘loz}7 where
n = dim V. Since U(a) € V, we can write

Ua) = apa+ -+ an_1T" Lo,

for some ag,ai,...,a,—1 € F. (Here there is no requirement for a;. If U is the zero operator, then
all a; are zero. If U is nonzero, there is at least one a; is nonzero.)
Let g=ap+az+ - +a,_12" ' € F[z]. By choice, we have

Ua=g(T)a.

We claim that U = g¢(T), namely, US = ¢(T)3 for all 3 € V. Actually this follows easily
from the above equation and the fact that V = Z(a;T). Here are some details. Since V =
Span {a, Ta,... ,T”’la}, it suffices to show that

U(T'a) = g(T)(T'a),i =0,1,...,n — 1.
For ¢ = 0, this follows from the definition of g. If i = 1, we have
U(Ta) = TU (o) = T(9(T)a) = g(T)(Ta).
Similarly, for any ¢ > 0, we have
U(T'a) =T'(Ua) = T'(9(T)a) = g(T)(T"a).

This shows that U = ¢(T').
Conversely, suppose that T does not have a cyclic vector, we will construct a linear operator
U :V — V, which is not a polynomial of T. Consider the cyclic decomposition of V:

V=Za;T)® Z(ax;T)® - & Z(ap; T),

as in the cyclic decomposition theorem. The condition “I’" does not have a cyclic vector” implies
that » > 2. Let p; be the annihilator of a;, we have pa|p;.

Let U = E,, the projection operator of V onto Z(«ag;T). Then UT = TU. This can be checked
easily or it follows from Theorem 10, p214. We prove that U is not a polynomial of T' by contradiction.
Suppose that U = ¢(T') for a polynomial g € F[x]. Note that for any o € Z(«a;T), we have
g(T)a = Ua = 0. Thus p;|g because p; is the annihilator of a;. On the other hand, ps|p; and thus
p2|g. This means that ¢ is a multiple of the annihilator of ap. Thus ¢g(T)as = 0. This contradicts
to Uas = as. We are done. O

Exercise 20: Let V be a finite dimensional vector space over the field F and T : V — V be a linear
operator. We ask when it is true that every non-zero vector in V' is a cyclic vector for T'. Prove that
this is the case if and only if the characteristic polynomial for T is irreducible over F'.
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Proof. Assume that the characteristic polynomial xr of T is irreducible in F[z]. In particular,
ur = xr- Given any a € V, e # 0, we need to show that Z(«;T) = V. Let p, be the T-annihilator
of a, we have py|ur. But pr is irreducible, and thus we have p, = pr. Thus dimp Z(o;T) =
deg(py) = deg(xr) = dim V. We have Z(«;T) = V.

Conversely, suppose that every nonzero vector in V is a cyclic vector. Take @ # 0, we have V =
Z(a;T). Suppose that pg is reducible, namely, ur = gh with g, h € F[z], deg(g) = k < n,deg(h) =
m < n, where n = dim V. Consider the vector 8 = g(T)a # 0. Since h(T)5 = pur(T)a = 0, the
T-annihilator pg of 8 divides h(T'). By Theorem 1 of page 228, we have dim Z(8;T) = deg(pg) <
degh =m < n. Thus Z(B8;T) # V and § is not a cyclic vector of V. O

Exercise 21: Let A € Mat,, x,(R). Let T : R™ — R"™ be the operator defined by A and U : C* — C"
be the operator defined by A. If the only subspaces invariant under T are R™ and the zero subspace,
then U is diagonalizable.

Proof. Let o € R™ be any nonzero vector and consider Z(a;T). Since Z(a;T) is a nonzero T-
invariant subspace of R"™, the assumption says that Z(«;7T) = R™. This shows that every nonzero
vector of R™ is a cyclic vector. Exercise 20 says that up = xr is irreducible. We know that any
irreducible polynomial over R is either linear or quadratic az? + bz + ¢ with a, b, ¢ € R, b? — 4ac < 0.
Either case, ur = xr has no repeated roots over C. Thus U is diagonalizable. Note that puy =
A = pr, namely no matter if you see A as a matrix over R or over C, its minimal polynomial is
the same. See Exercise 12. ]

Remark 10. Exercise 21 seems too easy because in this case we can only have n = 1 or 2. The
following general case is true. Let F' be a field of characteristic 0 and A € Mat,, x,,(F). Suppose that
F is an algebraically closed field such that F' C F. (Example: F is Q or {a +ba+ca?:ab,ce Q}
with o® =2,a € R; and F = C.) Let T : F™ — F™ be the linear operator defined by A. If the only
subspaces invariant under 7' are 0 and F" itself, then A is diagonalizable over F. In this general
case, the dimension of V' can be arbitrary. The proof is the same as the above once we know the
following fact: if F' has characteristic zero and f € F[z] is irreducible, then f has no repeated roots
over F. See Lemma of page 266 and Theorem 12 for its generalizations. If characteristic of F is
finite, the above is false. In fact, if characteristic of F' is finite, it is possible to find irreducible
polynomial f € F[z], such that over an algebraic closure of F, f = (x —¢)P for some positive integer
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